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Fig. 3.1 Snapshot of the experimental setup from a distance, showing an object during its fall and
the tape measure used for measurements. The image has been extracted from frame-by-
frame video footage.

Fig. 3.2 Major sources of uncertainty in reading data. Left: blurred black marks on the tape measure
indicating full feet (30.48 c¢m) of distance. Right: the error range in determining distances
an object has fallen.
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Fig. 3.3 Left: raw data showing the distance the body has fallen at a given time after the camera
was started. The household tape measure we used was purchased in the United States
and therefore shows distances in inches and feet, which we reproduce here. All data were
subsequently converted into the international unit system. The continuous line shows the
predicted fall distance with the parameter estimates from section 4. It is obvious that we
have been pessimistic about the magnitude of the error in most cases. Right: probability
density p;(d;|m) used for all data points.

Let us again phrase this measurement process in the language of probability
densities. We introduce a probability density p;(d;|m) that describes the relative
likelihood that the predicted fall distance f;(m) is compatible with our measurement
d;, given the fixed parameter m. Note that the density p;(d;/m) depends on the
uncertainty parameter 8, so it would be more appropriate to write p;(d;|m, d).

Looking at the figure, we realize that we should choose a probability density that
is centered around some “best guess value,” and we will allow the probability to be
nonzero around this value only within a range £46;, as we are certain that a parameter
that predicts a fall distance outside this range is incompatible with our measurements;
for example, in Figure 3.2(b), the probability density p;(d;|m) will be zero outside
the range indicated by the two white lines as we can emphatically state that the box
has fallen no less than the upper line and no more than the lower one, even if we may
not be quite so sure about possible values between these lines.

To give a concrete form for p;(d;|m) is more difficult, as this qualitative discussion
does not uniquely define a density. We could say that we do not really know what
the correct value within this range is and assume that d; is uniformly distributed on
the interval [f;(m) — d;, fi(m) + 6;]. On the other hand, we do believe that the true
value was closer to the center of the interval than to the end points. We can express
this using a probability density based on an inverted parabola:

di — fi(m)[?
62 ) = 5 (1= R ) )

With this particular choice, the normalization constant is K; = 3/(40;), and the
probability density is shown in the right panel of Figure 3.3. This choice of p;(d;|m)
is somewhat arbitrary, albeit consistent with our knowledge of uncertainties in the
data. Choosing a different description of p;(d;|m)—for example, the triangular “hat
function,” a truncated Gaussian, or a beta distribution—will lead to different re-
constructed values for g and C, though we have found that the dependence on the
particular shape of p;(d;|m) is not very strong.



158 ALLMARAS ET AL.

Because we extract measurements from individual frames, it is reasonable to
assume that the measurement errors are statistically independent. The probability
density that describes the collection of all measurements is then a product of the
densities for each measurement:

(3.3) pp(dfm) = Hm(dilm)~

3.3. Inverting Data for Parameters. The approach to parameter estimation
in Bayesian inversion is to compute—using our mathematical model based on the
physics, the likelihood function, the prior distribution, and the measured data—a
probability density o(m|d) = o(g,C|d) that will allow us to answer questions like,
“What is the probability that g is between a and b, and C' between d and e ?” 1f we can
compute such a probability density, the answer to the question is f; fde o(g,C|d) dC dg.
Note that the concept of a probability density ¢ goes beyond the goal of just find-
ing an estimate of the parameters m = {g,C'}. We can still define estimators based
on the posterior density (e.g., a MAP estimator or the posterior mean), but clearly
o contains more information, while the MAP and the posterior mean are just two
characteristics of the posterior.

In a proper application of Bayesian methods to inversion, the prior distribution
should not swamp the data and should introduce as little artificial information as
possible. The degree to which the data and the prior constrain the parameters is then
reflected in the shape of the posterior pdf o. In the ideal case, o is well localized and
unimodal, which would put a tight control on the variability of the parameters. If o
is unimodal but has a high variance, then the data may be too noisy and/or the prior
might not provide enough information to constrain the parameters. A multimodal
posterior may be an indication that more information is required to properly identify
the parameters.

Given these considerations, let us return to the task of computing o(m|d). Recall
that if we knew the “exact” parameter m and if our model was correct, then we
would measure d = f(m) if there was no measurement noise. On the other hand,
given measurement uncertainties, the likelihood of measuring d is given by pp(d|m)
as specified by (3.2) and (3.3).

However, we do not know m. Rather than predicting d from a known m (the
forward problem), we want to estimate m from measured values of d (the inverse
problem). In other words, rather than computing a probability density for d given m,
we want a probability density for m given d, taking into account our prior probability
density pps(m). The tool for this is Bayes’ theorem [14,24], which allows us to derive
the second probability density from the first and which in the current context reads

(3.4) o(mld) = k par(m) pp(djm),

where k is a normalization constant that may depend on d.

For our two-dimensional problem, it is easy to visualize the basic shape of the
posterior density; we do not even need to compute k. We start by selecting a grid
of points for m, and for each value of m we compute the value of the prior density
py(m). Then we calculate the predicted measurements f(m) using the forward model
and evaluate the corresponding likelihood pp(d|m) that relates our predictions to the
actual measurement values. We can also find the MAP by numerically approximating
the integral k' = [ par(m)pp(d|m) dm, and we can then use (1.2) and (1.3) to
calculate the posterior mean and standard deviation by numerical integration.
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Fig. 4.1 Left: a visualization of the posterior probability density o(g,C|d). Areas of highest proba-
bility are shown in red. Areas shown in white have a zero or negligible probability density.
The color scale is in arbitrary units since we work with a nonnormalized probability den-
sity. Right: marginal posterior density for gravity o(g|ld). Indicated in red is the smallest
interval of 95% credibility; the true value of gravity § = 9.7935m/s? is shown in blue.

We end this section by noting that more complex, high-dimensional problems can-
not usually be solved by numerical quadrature to approximate integrals such as those
necessary to compute k or to evaluate (1.2) and (1.3): if we covered parameter space
with a grid for quadrature that has N points in the direction of each of n parameters,
we would need to evaluate o(m|d) at N™ points. This quickly becomes impracti-
cal unless n is very small—an effect called the curse of dimensionality. Rather, one
usually has to resort to the heavier machinery of statistical sampling to approximate
integrals, for example, using MCMC methods [7,8, 14].

4. First Results. Let us finally bring theory and experimentation together. We
are interested in the posterior probability density o(m|d) = o(g,C|d) from (3.4),
using the prior information defined in (3.1), which contains our expectations of rea-
sonable physical values of the parameters, and the information from our measurements
and their uncertainties, defined in (3.2) and (3.3).

As explained above, for a problem with only two parameters—a low-dimensional
problem by most measures—a simple way to visualize o(g,C|d) is to evaluate it at
a number of sample points gg + iAg, Cyp + JAC and plot a function that interpolates
the values at these points. Such a plot of the nonnormalized probability density for
different values of the physical parameters m = {g, C'} is shown in the left panel of
Figure 4.1. As can be seen from the elongation of the region with high probability
density, the parameters we identify are correlated. We will comment again on the
cause of correlation in section 7.

Using formula (1.2), we compute the expected values for the parameters by ap-
proximating the integrals with appropriately weighted sums (quadrature) over the
same set of mesh points from which the figure was generated:

m _
(4.1) E(g|d) = 8.82, E(C|d) = 0.116m™*.

Here, we have used a mesh with 401 points in the range 7m/s? < g < 11m/s? and 351
points for 0 < C < 0.35m~!. We have verified that this is fine enough to make the
quadrature error negligible. The posterior probability density ¢ is negligible outside
these ranges for g, C.
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While we have no comparison for C' (since it depends on the viscosity and density
of air as well as weight and cross-section of the dropped object), the value for gravity
above is not a bad estimate for an experiment as simple as ours: at the location of
College Station, TX (¢ = 30.61°N, ¢ = 96.32°W, and h = 298 ft above sea level), an
approximate value of true gravity can be computed as [26]

(4.2) g= {9.780327 (1+0.0053024 - (sin ¢)* — 0.0000058 - (sin 2¢)?)

~1.965-10"%m ™" - h| 5 ~ 9.793575.
S S

In other words, if we use the posterior mean as an estimator of the true value
of gravity, we see that it underestimates the true g by some 10%. But the Bayesian
solution is the posterior pdf, which contains a lot more information than just the
expected values (4.1). We can, for example, look at the probability density for the
gravity constant alone—the marginal posterior density—which is given by

otold) = [ olg.Cla) ac.

Again, we approximate the integral by weighted sums over our sample points. The
resulting marginal posterior density is shown in the right panel of Figure 4.1. The
true value of gravity lies outside the interval [8.10m/s?,9.54m/s?] of 95% credibility
(indicated in red). This implies that in terms of the posterior density we computed
from our experiment, the value § (that we happen to know is correct) is a highly un-
likely value for the gravity constant as determined from our experiment. Put another
way, given that we know the correct answer, the results we get from using our prior
knowledge and measurement data are not actually all that impressive! We explore
one possible explanation for this discrepancy in section 6.

5. Validating Results. The result of our computations above is the probability
density o(m|d) derived in (3.4) from the measured data d, prior probability pas, and
our assumptions on measurement errors pp and the physical model (2.5). However,
it is important to realize that we would have obtained such a probability even if some
of our assumptions had been completely unrealistic. For example, if we had assumed
that the physical model yields a linear fall distance z(t) = at + b, we could have
made m = {a, b} the parameters to be identified and would have obtained a posterior
probability density o({a,b}|d) that would have indicated which values for a,b are
the most probable. Of course, looking at where data points lie in Figure 3.3, it is
clear that even the most probable linear model will describe the data in an entirely
inadequate way!

It is therefore important to wvalidate the results we have obtained above: Rather
than simply trusting our results, we have to verify that they make sense. There are
many ways to define measures that quantify whether the parameters identified by
o(m|d) reasonably describe the data d and their uncertainty (see, for example, [25]).
Since most of these methods require sampling from the probability density o(m|d)—
and therefore the machinery of MCMC methods [7,8,14] that are outside the scope
of this paper—we will not describe them in detail here. That said, the general idea of
such validation attempts is to generate a collection of synthetic measurements d*) =
f(m(k)) + () for “representative” members m*) ¢(*) of the posterior probability
density o(m|d) and of the experimentally determined measurement uncertainty given
in (3.2). One would then test that the actual measurements d are compatible with
the statistics of the collection d(*).
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For our experiments, such a validation did not indicate any major issues. If this
had been an experiment for which we did not know the “true” value of gravity, we
would have likely closed the book and declared victory. On the other hand, besides
the poor match of E(g|d) to the known value g, there was one additional clue that
something might still be missing and that illustrates the importance of experience and
intuition in using experimental data. We will discuss this in the following section.

6. Adding a Third Parameter: Start Time. While extracting data frame by
frame for the distance the body fell, we realized that it was not trivial to determine the
time the body was released. The time At between frames is one thirtieth of a second
and the distance the body falls within the first frame after release is % gAt? =~ 0.5 cm.
The camera was positioned in such a way that it could see at least 5 m of vertical
distance. At the resolution of typical inexpensive video cameras, 0.5 cm is significantly
less than one pixel. To compound the problem, video footage is typically compressed
and blurred, further reducing the effective resolution.

After flipping back and forth between frames many times, the best we could say
was that the body was definitely moving between frames 42 and 43 and, possibly,
though we could not really determine this with any degree of confidence, between
frames 41 and 42. The body was not moving between frames 40 and 41. To put this
in mathematical terms, the start time ty definitely satisfied 41At < tg < 43At and
we are inclined to believe that in fact 41At < tg < 42At.

This is not a strong statement, but it is typical of any physical measurement
process: we would need to have the same sort of discussion had we used a higher
resolution camera with a higher frame rate. Pressed to choose a start time ty, we
determined that frame 42 was our best guess and, consequently, chose to = 42At for
the computations shown in section 4. Furthermore, by using various values for ¢y in
computing the results of section 4, we realized that o(m|d) varies dramatically with
to. In other words, the sensitivity of o(m|d) with respect to ty is large, indicating
that we would need to know ¢ accurately to determine o(m|d) accurately.

The difficulties we encountered in the choice of start time and the sensitivity of
the results with respect to this value make it clear that in reality tg is just another
parameter in our model (2.3)—(2.4), and one that we know only up to some uncer-
tainty. We should therefore treat it using the techniques for uncertain parameters
we introduced in sections 3.2 and 3.3: We let the set of model parameters m be
m = {g,C,to}, define a prior probability density pys(m) as in (3.1), define the like-
lihood pp(d|jm) as in (3.3), and combine them into the posterior probability density
o(m|d) = o(g,C,to|d) = k pp(m) pp(d/m) for all three parameters as in (3.4). In
the process of evaluating pp we have to compute f(m), which is now a function that
predicts fall distances at times ¢; for the values of g, C, and ¢y given by the tuple m.
f(m) can be computed in exactly the same way as before.

The only step that differs significantly is the definition of the prior probability
pa(m). We assume that ¢ is independent of g and C and has a pdf given by the
function

1 for 41A¢ < tg < 42At,
b(te) = 1 — =280 for 49Nt < o < 43At, g
0 for tg < 42At or 43At < tg

41At 42At 43At

|3
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that encodes our best knowledge of the start time. The prior pdf for m is then
(6.1) par(m) = par(9,Csto) = Kar X[o203](9) Xpo.0.5m—11(C) ¥ (to),

where k) is another normalization constant different from the one chosen in (3.1).
Certainly, other forms for 1(tg) could be chosen, leading to slightly different results,
but any choice would have the same general structure to be compatible with the
discussion at the beginning of this section.

With all these pieces in place, we can evaluate the new posterior density o(m|d)
indicating the relative probability of different values of g, C, and ty. From this, we
compute expected values through (1.2), using quadrature on a mesh in m space to
replace integrals, and obtain

m
E(gld) = 8643,

(6.2) E(C|d) = 0.106m ™",
E(to|d) = 42A¢ — 0.005s.

Here, we have used 601, 141, and 101 mesh points for quadrature for the ranges
6m/s? < g <12m/s?,—0.2m~! < C < 0.5m™!, and 42A¢ —0.05s < tg < 42At+0.05s,
respectively. Again, we have verified that this mesh is sufficiently fine that quadrature
errors are negligible.

We see that our results indicate that the most likely starting time is one-sixth of
a frame before frame 42. However, we also find that stddev(¢p|d) = 0.015s; i.e., we
know the start time only with a significant uncertainty of almost one half of a frame.
To put this standard deviation in context, consider that the prior probability by itself
has expectation values and standard deviations equal to

E(to) = UO; W(to) dto]l /Oo to(to) dtg = (42 - g) At

— 00

~ 42At — 0.0074s,

stddev(ty) = \/[/Z b(to) dto} - /Z(to — E(to))2 9 (to) dto = \/%At

~ 0.48At ~ 0.016s.

In other words, our measurement data are only moderately successful in telling us
anything more about the start time than what we already knew and encoded in our
prior probability density.

On the other hand, the addition of ¢y to the set of parameters to be determined
has a significant impact on the parameters we recover. In particular, the posterior
mean of g is farther from the true value § from (4.2). This does not sound like an
improvement at first, but we can show that allowing ¢y to be uncertain leads to a
much larger uncertainty in g compared to the results of section 4. To see this, we can
again compute the marginal posterior density for gravity:

o(gld) = / / o(9. . told) dt dC.



BAYESIAN PARAMETER ESTIMATION: A COMPLETE EXAMPLE 163

0.6}
5
O
S 0.4
O
o)
5 02}
©
6 7438 9 9094 11 12

Fig. 6.1 Marginal posterior density for gravity o(g|d). Indicated in red is the smallest interval of
95% credibility; the true value of gravity § = 9.7935 is shown in blue.

Fig. 6.2 Isocontours for the 50 (red) and 95% (yellow) credibility levels and marginal probabilities
(projected on the sides of the box) of o(g,C,to|d). Since the prior probability pps(m)
assigns zero probability to values C < 0 and tg < 41At, the credible regions have sharp
edges at these threshold values.

A plot of o(g|d) is shown in Figure 6.1. This time, ¢ lies well within the now much
wider 95% credibility interval [7.43m/s?,9.94m/s?]. As a consequence of introducing
uncertainty in tg, the true gravity constant ¢ is now a quite plausible value for g.

To gain a further understanding of the structure of the posterior probability den-
sity, we plot (g, C,to|d) in the same way as we did in Figure 4.1 for the case of two
parameters. Figure 6.2 shows similar results for all three parameters. Visualizing
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three- or higher-dimensional probability densities is notoriously difficult. One strat-
egy, used in the picture, is to show the boundaries of the credible regions I5gy and Igsy,.
A credible region I, is defined by a threshold value s, as that volume in R3 so that

c(mld)s, > s, o(mld)lgs, < s, / o(mld) d*m = r.
I,
In other words, the credible region of level r is the region of highest probability den-
sity, so that the combined probability for all points lying inside it is r. I5qy can
be interpreted as follows: due to measurement uncertainties, we do not know where
exactly the “true” parameter m lies, but we know with 50% probability that it is
within the region I5qy.

To further illustrate the shape and three-dimensional structure of the probability
density o, the sides of the box shown in Figure 6.2 depict the marginal probabilities
obtained by integrating over the direction perpendicular to a plane; for example, the
back left side of the box shows

oo

o(g,C|d) = / o(g,C, to|d) dto.
—00
This is the probability density we are actually interested in and for which we initially
performed the physical experiment, as we only care about g and C.

7. Conclusions and Outlook. Traditionally, parameter estimation was concerned
with finding single estimates of the parameters of systems—for example, the often-
used least squares fit of parameters to data. This gives useful information about
parameters, but it is frequently difficult to assess how certain we can be of these esti-
mates beyond, say, the computation of standard deviations based on linearized mod-
els and Gaussian noise assumptions. Bayesian inversion as discussed here provides an
alternative viewpoint: Our discussions above illustrate how we can determine prob-
ability densities of parameters from measurements obtained in physical experiments,
carefully accounting for our prior knowledge as well as our best guess of uncertain-
ties in our measurements. The posterior probability density resulting from Bayesian
inversion provides significantly more information than any single estimator of the
parameters.

This additional information is important. For example, assume that we have
obtained an estimate for the density and viscosity of air from an experiment. If our
goal is to verify that a particular wing design provides enough lift for a plane to fly,
then we could do a numerical simulation with these particular values of the parameters
and confirm that it indeed does. On the other hand, what if the experimental setup
was able to give us only a rough estimate of the parameters, and the values we used
in the numerical simulation were in fact inaccurate? In that case, the conclusions
from the simulation would be worthless. This is avoidable when inverting parameters
using the Bayesian framework discussed in this paper: There, the result of inversion
is not a single set of parameters but rather a probability distribution on the space
of parameters. Consequently, if our goal is to predict outcomes, predictions will be
uncertain when there is uncertainty in the parameters used as input, even if the
model is exact. As a result, the best that can be done is to provide a probability
distribution for predicted output quantities, and, in the example, a probability that
the plane will in fact fly. Producing such probability distributions in the case of many
input parameters and output quantities is a difficult task, and it is the essence of the
mathematical field of uncertainty quantification [3,18,22,28].
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We should also step back and ask whether our Bayesian inversion of measurement
data was the best we could have done to determine a probability distribution for the
parameters in our model. We want to constrain the parameters as much as possible;
i.e., we want to measure in such a way that the posterior probability density is as
localized as possible. Ideally, the probability distributions o(g, C|d) or o(g,C,to|d)
should be Dirac delta functions, but, given the measurement data we have, we have
to accept the probability density produced by the Bayesian inversion formalism as it
is. To get a more localized density we have to change what we measure. The field of
optimal experimental design [1,6,9,19,20] deals with the question of how to measure
things so as to obtain the best estimates of the parameters (as defined by a particular
criterion) given the available resources and experimental constraints.

To illustrate the importance of experimental design, let us consider what would
happen if we had only been able to determine the distance the body had fallen in
the first five or last five frames shown in Figure 3.3, respectively. Five data points
should be enough to determine two parameters, but the uncertainties are generally
larger if we have less data available. Indeed, this is what we see in the probability
densities shown in Figure 7.1: we show the results of following the same procedure as
in section 4 to find o(g,C|d), but using only the first (left panel) or last five (right
panel) data points. These results are easily interpreted. If we use only the first five
data points, then our posterior pdf is almost uninformative: it is zero for negative
values of the friction coefficient (as a result of our choice of prior probability for this
parameter), but apart from that, almost constant and very broad in the direction of
the gravity constant g. In effect, the posterior density o has significant values in the
entire range shown. This makes sense because at early times, the body is still too
slow for friction to play a significant role, and what we measure is almost completely
independent of the air friction coefficient. Second, the error bars are so large compared
to the measured values at early times that wildly different values of g lead to predicted
falling distances z(t;) that are all still compatible with the error bars.

On the other hand, if we only have measurements from the last five video frames,
then gravity and friction are already close to a balance and the body’s speed is ap-
proximately equal to vo, = 1/¢/C. As a result, we are no longer able to determine
g and C independently; we can only determine their ratio g/C, which is constant
along lines in g-C-space. This explains the elongated shape—i.e., the high degree of
correlation—of the recovered probability density.

The lesson from this is that the choice of what, where, and how we measure has
a large impact on how accurately we can determine the parameters. This realization
allows us to reveal our reasons for choosing the setup of the experiment from which we
obtained the data used in this article. We performed many experiments, dropping a
variety of objects from different heights. Most of the objects we tried were either too
heavy compared to their size (balls, beanbags) or too light (the paper bag by itself,
air balloons). In the first case, our experiment was too short to see air friction act (see
the left panel of Figure 7.1) or the object was so light that it almost instantly assumed
its equilibrium velocity (see the right panel of Figure 7.1). Other objects, such as the
stuffed animal Mr. Tiger by himself (without the brown paper bag), had such odd
shapes that it was impossible to determine how far they had fallen in a given frame.
Only a judicious choice of experiment from the many we performed allowed us to invert
data in such a way that the posterior probability density o(g,C|d) was reasonably
localized and therefore allowed the determination of parameters without unduly large
uncertainties, underlining the point made at the beginning of this paragraph.
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Fig. 7.1 o(g,C|d) for the case where we use only the first five data points of Figure 3.3 (left) or
only the last five data points (right). The center plot was obtained using all data points
and matches Figure 4.1.
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