
MATH 442: Mathematical Modeling
Lecturer: Dr. Jean Marie Linhart

http://www.math.tamu.edu/~jmlinhart/m442

Assignment 2 – due Thursday 1/31/2013

You are going upload a zip file containing a Matlab script file and a Matlab
function files as described below.

If you are finding this difficult, either start looking at the getting started
with Matlab file linked with this homework, look at the Matlab resources I
have on the web, go to the library and find a Matlab reference to help (or go
buy one).

Try to develop some knowledge and autonomy so that Matlab is your
tool to use.

You can also ask your classmates, the TAs and me for help. That said, don’t
copy, and if you receive extensive help from someone, you should probably
acknowledge it in the comments of your code.

1. Type the following code into Matlab (verbatim).

clear all; %clears Matlab’s memory.

close all; %closes all of the currently open figures.

t = linspace(0,3*pi, 100);

x = cos(t);

y = sin(t);

z = zeros(size(t));

figure(1)

plot(t, x, ’k--’, ’LineWidth’, 2)

hold on;

plot(t, y, ’k’, ’LineWidth’, 2)

plot(t, z, ’:k’)

title(’Sine and Cosine’,’FontSize’, 24)

xlabel(’x’, ’FontSize’, 20)

ylabel(’y’, ’FontSize’, 20)

legend(’y=cos(x)’, ’y=sin(x)’)

xlim([0 3*pi])

The % character is a comment character. I made comments after the first
two lines telling you what they did.

You are to provide brief comments for the remaining lines explaining what
they do. You can, for example, comment out an entire line of code by
starting it with %. You can figure out what the xlim([0 3*pi]) com-
mand does by comparing the graphs with the command commented out
or included.
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2. Make t go from 0 to 4π with 150 steps in between. Open figure 2 and
make a graph of the functions t sin(t) and t cos(t) overlaid on the same set
of axes using LineWidth 2. Use the axis command to make the t axis go
from [0, 4π], and the y axis from [−4π, 4π]. The title of your graph should
be “tsin(t) and tcos(t) from 0 to 4\pi” with FontSize 24. The xlabel is
“t”, the ylabel is “tsin(t) and tcos(t)”, and have the labels display with
FontSize 18. Include a legend with labels ‘tsin(t)’ and ‘tcos(t)’. (Hint:
You need .* here.)

3. Open figure 3 you will graph t sin(t) and t cos(t) as above, but you will
stack the two plots instead of overlaying them. You will use the command
subplot(), which takes three arguments, the number of rows, the number
of columns and which plot you are on. subplot(2,1,1) says that on this
figure I will have 2 rows, 1 column, and the plot to follow is the first
one. Since the two graphs are not overlaid, you do not need a legend, but
modify titles, axis labels, etc. appropriately.

4. The Bim-Bam challenge. Use a for loop and if statements to have Mat-
lab count from 1 to 100, replacing multiples of 3 with Bim and multiples
of 5 with Bam. If the number is a multiple of both 3 and 5, replace it
with BimBam. Otherwise output the digit in question. The mod() func-
tion (modular arithmetic) might be helpful here. I created a script file
called BimBam for my code, and I used fprintf(’Bim,’) and similar
commands to get the output you see below.

>> BimBam

1, 2, Bim, 4, Bam, Bim, 7, 8, Bim, Bam,

11, Bim, 13, 14, BimBam, 16,

>>

5. Now I want you to use Matlab ’s ode45() command, which is matlab’s
standard numerical code for solving a differential equation. It assumes the
differential equation is written in the form

x′ = f(t,x)

where x and x′ are column vectors, and t represents the independent
variable. We are going to solve the Lotka-Volterra predator-prey equations

dx

dt
= a1x− b1xy

dy

dt
= −a2y + b2xy

The first equation is for the prey, the second equation is for the predators.
These are autonomous ODEs, meaning there is no t dependence. Take a
look at Section 1.4 in A Concrete Approach to Mathematical Modeling
for more information; we are going to reproduce the graphs on page 10.
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Here is the syntax for ode45(): ode45(odefun, tspan, y0, options). The
first argument, odefun is the differential equation function, which must be
in the form x′ = f(t,x). The second argument tspan gives the time span.
If you give the time span as two numbers indicating the beginning time
and ending time, Matlab will determine where to evaluate the x(t) in
between these. You can also give a vector of numbers, and in this case
Matlab will evaluate x(t) where you asked it to. The third argument y0
is the initial condition; if the first time value you give is t0 then x(t0) = y0.
The last argument, options allows you to customize how ode45 works. You
can, for example, change the tolerance or error criterion that ode45 uses
to tell when the solution is good enough.

First write the differential equation. Open a new function file. Give your
function a descriptive (but not too long) name that tells you what it is; I
used LotVolt. To fit the general ODE form, your function will accept as
input variables t, x and the output variable will be xp, which stands for
x-prime (x′). Program in the Lotka-Volterra ODEs with constants a1 = 3,
a2 = 5/2, b1 = 2, b2 = 1. Save your file; the file name must be of the form
filename.m where the file name agrees with your function name.
My file as saved as LotVolt.m.

Now, assuming your function is named LotVolt, our time span is from
t = 0 to t = 6, and we have initial conditions x(0) = 1 and y(0) = 1 you
can invoke ode45 with the following command

[t x] = ode45(@LotVolt, [0 6], [1 1]);

In t we will have a (column) vector of time values. In x we will have an
array with 2 columns, the first column is x(t) the prey population over
time, the second is y(t), the predator population over time.

In figure 4 and figure 5 create reasonable facsimiles of figure 1.2 and figure
1.3 on page 10 of A Concrete Approach to Mathematical Modeling. Label
your graphs well.

6. Numerical methods for ordinary differential equations. We are
going to program Euler’s Method for solving an ODE.

You know from the limit definition of the derivative that

x′(t) = lim
h→0

x(t+ h)− x(t)

h

Assuming h is small,

x′(t) ≈ x(t+ h)− x(t)

h
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should be a good approximation. Rearrange to get

x(t+ h) ≈ x(t) + hx′(t)

If ODE is in the form

x′ = f(t,x), x(t0) = x0

we get
x(t+ h) = x(t) + hf(t,x(t))

This gives us Euler’s method

x(tn+1) = x(tn) + hf(tn,x(tn))

Open a new function file in Matlab, and save it as euler.m. Type the
following code in exactly as written

function [t,y] = euler(func, T, y0)

% explicit Euler method for scalar ODEs of the form y’=func(t,y)

% Arguments:

% func(t,y) is the ODE which returns a *column* vector

% T is a vector with time steps

% y0 the initial condition at T(1) (row vector)

% N gives number of time steps

N=length(T);

M = length(y0);

%create a vectors for t

t=zeros(N,1);

%create a matrix for y since y0 may be a vector.

y=zeros(N,length(y0));

%first row is our initial condition

t(1)=T(1);

y(1,:)=y0;

for n=1:N-1

t(n+1)=T(n+1);

h = T(n+1) - T(n);

%func returns a column vector, whereas y(n,:) is a row vector

%the ’ operation transposes a matrix.

y(n+1,:)= y(n,:) + h*func(t(n),y(n,:))’;

end

end
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We will use this code to solve the Lotka-Volterra equations as in the pre-
vious problem.

Unlike ode45(), for our Euler code, we have to supply a complete vector
of time values. Use

tspan = 0:0.05:6;

[t x1] = euler(@LotVolt, tspan, [1 1]);

[t x2] = ode45(@LotVolt, tspan, [1 1]);

In figure 6 you will use subplot to get 2 plots stacked vertically. For
the top plot, plot the the prey population from the Euler code versus
time, and overlay a plot of the prey population from ode45() versus time.
For the bottom plot, do the same with the predator populations. Include
appropriate titles, axis labels, and a legend clearly identifying which curves
are from ode45() and which are from the Euler method.

7. Now that you’ve successfully programmed the Euler method, you will
program the Runge-Kutta order 4 method, which is a lot more accurate
than Euler. Runge-Kutta order 4 is derived from the Taylor series for
x(t); here is the algorithm:

h = tn+1 − tn
k1 = hf(tn,yn)

k2 = hf

(
tn +

1

2
h,yn +

1

2
k1

)
k3 = hf

(
tn +

1

2
h,yn +

1

2
k2

)
k4 = hf (tn + h,yn + k3)

yn+1 = yn +
k1 + 2k2 + 2k3 + k4
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Rather than starting from scratch, open up your Euler method code, and
IMMEDIATELY save it with file name rk4.m. Do not inadvertently
write over the Euler code you just created. Rename the function to rk4.
Add and modify what you must to get the above algorithm working. Don’t
forget to change the comments!

Once you have it working, use it to solve the Lotka-Volterra equations as
you did with Euler above. Use t = 0:0.05:6 again, and initial condition
x(0) = 1, y(0) = 1.

In figure 7, you will use subplot to get 2 plots stacked vertically. The
top will be the prey populations versus time from the Euler code, the
rk4 code, and the ode45(). The lower will be the predator populations
from the three ODE solvers. Include appropriate titles, axis labels, and
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a legend clearly identifying which curves are from rk4, which are from
ode45() and which are from euler.

The curve from rk4() should line up on top of the curve for ode45().
ode45() is an improvement on rk4(); both are much more accurate than
Euler.
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