MATH 308: Ordinary Differential Equations

Instructor: Dr. Jean Marie Linhart
http://www.math.tamu.edu/~jmlinhart/m308

Homework assignment 11 - due Thursday 11/29/2012

Problem 1: Evaluate the integral or find the Laplace transform
a) $\int_{-\infty}^{\infty} \delta\left(t-\frac{\pi}{2}\right)(\sin (t)+\cos (t)) d t$
b) $\int_{3}^{\infty} \delta(t-2)\left(t^{2}-4 t+1\right) d t$
c) What is $\int_{-c}^{\infty} \delta(t-c) f(t) d t$ if $c>0$? How about if $c<0$?
d) $\mathcal{L}\left\{t^{3} \delta(t-1)\right\}$
e) $\mathcal{L}\{\delta(t-\pi) \tan (t)\}$

Problem 2 Solve
a) $y^{\prime \prime}+9 y=-\delta(t-2 \pi), \quad y(0)=1, \quad y^{\prime}(0)=0$
b) $y^{\prime \prime}+2 y^{\prime}+2 y=\delta(t-\pi), \quad y(0)=0, \quad y^{\prime}(0)=1$
c) $y^{\prime \prime}+2 y^{\prime}-3 y=\delta(t-1)-\delta(t-2), \quad y(0)=2, \quad y^{\prime}(0)=2$

Problem 3: Recall that we've discussed that soldiers are told not to march in cadence while crossing a bridge. By solving the symbolic initial value problem

$$
y^{\prime \prime}+y=\sum_{k=1}^{\infty} \delta(t-2 k \pi), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

explain why soldiers are so instructed. You may take

$$
\mathcal{L}\left\{\sum_{k=1}^{\infty} \delta(t-2 k \pi)\right\}=\sum_{k=1}^{\infty} \mathcal{L}\{\delta(t-2 k \pi)\}
$$

and likewise for the inverse transformation; do not add up the geometric series. Recall $\sin (t-2 k \pi)=\sin (t)$.

Your answer to this problem should include:
a) A few sentences explaining how the ODE above relates to the soldiers marching in cadence across the bridge.
b) Some math (using Laplace transforms) to solve the ODE.
c) A few sentences explaining how the solution to the ODE shows that this is not a very good idea.

Problem 4: Find the general solution to

$$
\mathrm{x}^{\prime}=A \mathrm{x}
$$

where A is the matrix given below. For each problem
i. Give the general solution.
ii. If an initial condition is given, find the particular solution.
iii. Use pplane8 to plot the phase plane and some solutions. Include the graphs with your answer.
iv. Classify the equilibrium solution $\mathbf{x}=\mathbf{0}$. Is it a node, a saddle point, a spiral point a circle? Is it stable or unstable?

You should be able to do these problems by hand or with a simple calculator. Only use Matlab to confirm your answer and to plot the graphs.
a) $A=\left[\begin{array}{ll}-2.5 & -0.5 \\ -0.5 & -2.5\end{array}\right], \quad \mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right]$
b) $A=\left[\begin{array}{cc}-2 & -1 \\ 2 & 0\end{array}\right]$
c) $A=\left[\begin{array}{cc}1 & -2 \\ 3 & 6\end{array}\right]$

Problem 5: Find the general solution to

$$
\mathrm{x}^{\prime}=A \mathrm{x}
$$

where A is the matrix given below. For each problem
i. Give the general solution.
ii. If an initial condition is given, find the particular solution.
iii. Use pplane8 to plot the phase plane and some solutions. Include the graphs with your answer.
iv. Classify the equilibrium solution $\mathbf{x}=\mathbf{0}$. Is it a node, a saddle point, a spiral point a circle? Is it stable or unstable?

You should be able to do these problems by hand or with a simple calculator. Only use Matlab to confirm your answer and to plot the graphs.
a) $A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 4\end{array}\right], \quad \mathbf{x}(0)=\left[\begin{array}{l}-1 \\ -7\end{array}\right]$
b) $A=\left[\begin{array}{cc}2 & 2 \\ -8 & 2\end{array}\right]$
c) $A=\left[\begin{array}{cc}-3 & -6 \\ 3 & 3\end{array}\right]$

This is not easy material; I strongly recommend you do the following problems as well as these.

Section 6.5: 1-23 odd, 24-26, 27ab
Section 7.1: 1-11 odd
Section 7.2: 1-25 odd
Section 7.3: 16-21

